The Hurwitz Enumeration Problem of Branched Covers and Hodge Integrals
نویسندگان
چکیده
We use algebraic methods to compute the simple Hurwitz numbers for arbitrary source and target Riemann surfaces. For an elliptic curve target, we reproduce the results previously obtained by string theorists. Motivated by the Gromov-Witten potentials, we find a general generating function for the simple Hurwitz numbers in terms of the representation theory of the symmetric group Sn. We also find a generating function for Hodge integrals on the moduli space Mg,2 of Riemann surfaces with two marked points, similar to that found by Faber and Pandharipande for the case of one marked point. ∗E-mail: [email protected]. †E-mail: [email protected]. Research supported in part by an NSF Graduate Fellowship and the U.S. Department of Energy under cooperative research agreement #DE-FC02-94ER40818. ‡E-mail: [email protected]. Research supported in part by an NSF Graduate Fellowship and the U.S. Department of Energy under contract DE-AC03-76SF00515.
منابع مشابه
Hodge-type integrals on moduli spaces of admissible covers
Hodge integrals are a class of intersection numbers on moduli spaces of curves involving the tautological classes λi, which are the Chern classes of the Hodge bundle E. In recent years Hodge integrals have shown a great amount of interconnections with Gromov-Witten theory and enumerative geometry. The classical Hurwitz numbers, counting the numbers of ramified Covers of a curve with an assigned...
متن کاملTopological String Theory and Enumerative Geometry
In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of stu...
متن کاملGenerating Functions for Hurwitz-Hodge Integrals
In this paper we describe explicit generating functions for a large class of Hurwitz-Hodge integrals. These are integrals of tautological classes on moduli spaces of admissible covers, a (stackily) smooth compactification of the Hurwitz schemes. Admissible covers and their tautological classes are interesting mathematical objects on their own, but recently they have proved to be a useful tool f...
متن کاملA Relative Riemann-hurwitz Theorem, the Hurwitz-hodge Bundle, and Orbifold Gromov-witten Theory
We provide a formula describing the G-module structure of the Hurwitz-Hodge bundle for admissible G-covers in terms of the Hodge bundle of the base curve, and more generally, for describing the G-module structure of the push-forward to the base of any sheaf on a family of admissible Gcovers. This formula can be interpreted as a representation-ring-valued relative Riemann-Hurwitz formula for fam...
متن کاملHodge Integrals and Hurwitz Numbers via Virtual Localization
Ekedahl, Lando, Shapiro, and Vainshtein announced a remarkable formula ([ELSV]) expressing Hurwitz numbers (counting covers of P with specified simple branch points, and specified branching over one other point) in terms of Hodge integrals. We give a proof of this formula using virtual localization on the moduli space of stable maps, and describe how the proof could be simplified by the proper ...
متن کامل